Effect of cattle production practices on the incidence of dark cutting beef

Shahid Mahmood, Walter T. Dixon, Heather L. Bruce
Department of Agricultural, Food and Nutritional Science
University of Alberta, Canada

96th Annual Canadian Meat Council Conference
September 28th, 2016
Ottawa, Canada
Dark cutting beef

Dark cutting?
Dark cutting beef

Glitches with dark cutting

Tenderness

Taste/Flavour

Shelf life
Dark cutting beef

Incidence and repercussions

<table>
<thead>
<tr>
<th>Year</th>
<th>Dark Cutting Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>0.80</td>
</tr>
<tr>
<td>1997</td>
<td>1.00</td>
</tr>
<tr>
<td>2000</td>
<td>1.00</td>
</tr>
<tr>
<td>2011</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Price Discount

- $40/cwt or $340/head

Reducing dark cutting

- 1.2 to 0.8%
- Saves: $1.77 million

Report BCRC 2009-2013

Dark cutting beef

Potential Factors

Pre-slaughter stress
- Animal mixing
- Animal Handling
- Transportation
- Weather
- Estrus

Carcass/Abattoir
- Carcass weight
- Musculature
- Fat depth
- Chilling

Probably
- Growth promotants
- Production systems
- Muscle metabolism
- Nutrition
- Infection

Immonen et al., 2000; Jones & Tong, 1989; Kenny & Tarrant, 1988; Scanga et al., 1998; Kyla-Puhju et al., 2005
Objectives

- University of Alberta
- Dark cutting
- Melengestrol acetate
- Cattle gender
- Beta agonist
- Growth implants
- Pre-slaughter management
- Production system
- Weather
- Pre-slaughter management
Material and Methods

Data Collection

Two data-sets

I. Data set A (Single Farm)
II. Data set B (Farm X, Y and Z)

Information

• Cattle gender
• Production system (Calf-fed vs Yearling-fed)
• Melengestrol acetate (MGA)
• Hormonal growth promotants
• Beta agonist
• Feeding
• Carcass data
Material and Methods

Data-set A
(n=2058)

Calf-fed cattle
I. Heifers and Steers
II. Optaflexx® vs No Optaflexx®

Yearling-fed cattle
I. Heifers and Steers
II. Optaflexx® vs No-Optaflexx®

- Calf-fed received two implants (Ralgro® + Synovex Choice®).
- Yearling-fed received One implant (Synovex Choice®).
- 90 days gap between terminal implant and slaughter.
Material and Methods

Data-set B
\((n = 86408)\)

Yearling-fed Heifers and Steers

I. Pasture grazed or grass fed (GY)
II. Backgrounded yearling (BY)

Calf-fed Heifers and Steers

I. Winter calves (WC)
II. Fall calves (FC)

Cattle Breeds
- Red (predominantly Angus or Limousine)
- Black (predominantly black Angus)
- Red white-face (predominantly Hereford)
- White or tan to grey (Charolaise)
Material and Methods

Data-set B

Hormonal Growth Implants

Calf-fed Cattle

- Calves < 700 Lbs
 - Ralgro--1st
 - Component TE-100--2nd Implant
 - Component TE-200--3rd Implant

- Calves > 700 Lbs
 - Component TE-100--1st Implant
 - Component TE-200--2nd Implant

Yearling-fed Cattle

- Cattle < 1000 Lbs
 - Component TE-100--1st Implant
 - Component TE-200—2nd Implant

- Cattle > 1000 Lbs
 - Component TE-200--1st Implant

Steers: OptaflexxTM for 28-30 days

Heifers: MGA until 2 days before shipment
Material and Methods

Data-set B

Slaughter seasons

- Winter (mostly below 0°C and as low as -20°C)
 - December
 - January
 - February
- Spring (above 0°C)
 - March
 - April
- Summer (9°C to 20°C)
 - May to September
- Fall (-17°C to +14°C)
 - October
 - November
Material and Methods

Statistical Analyses

- Separate analyses for data-set A and B.
- Used statistical analysis system (SAS, Version 9.3).
- Catmod procedure and logistic regression to estimate the likelihood of dark cutting.
- General Linear Models procedure for the analysis of variance.
Results

Data-set A
(n=2058)
Overall dark-cutting: 2.23%
Results

Data-set A

- Calf-fed and yearling-fed heifers were at greater risk of cutting dark.
- Steers were less likely to cut dark regardless of the production system.
Results

Data-set A

- Production system (Calf vs Yearling) interacted with Optaflexx® treatment (Optaflexx® vs No Optaflexx®).
- Yearling cattle received no Optaflexx® had increased frequency of Prime and AAA carcasses.
- No effect on the likelihood of grading Canada B4 (dark-cutting).
Results

Data-set B

Overall dark-cutting: 0.85%

- Interaction of gender with implant nested within production system (Calf-fed vs Yearling-fed).
- No clear trend for implant effect.
Results

Data-set B

Effect of production system and gender

Increased frequency of dark cutting in WC, FC and BY heifers.

Grass-fed (GY) heifers and steers had reduced frequency of dark cutting.
Results

Data-set B

- Backgrounded-yearling (BY)
- Grass-fed yearling (GY)
- Fall calves (FC)
- Winter calves (WC)

Production system was confounded with slaughter season/months.
Analysis incorporating season, gender and four production systems was redundant.
Results

- Three-way interaction of gender, production system (GY and BY) and season.
- Slaughter season influenced the likelihood of dark cutting.
- Trend of production system effect remained as in the analysis with gender and production system alone.

Backgrounded yearling (BY) and grass-fed (GY) yearling cattle were slaughtered in all four seasons.
Results

Analysis of Variance

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Fall calved steers</th>
<th></th>
<th>Winter calved steers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>AA</td>
<td>AAA</td>
<td>Prime</td>
</tr>
<tr>
<td>n</td>
<td>292</td>
<td>8023</td>
<td>9144</td>
<td>73</td>
</tr>
<tr>
<td>Start weight (kg)</td>
<td>297<sup>e</sup> (3.02)</td>
<td>298<sup>e</sup> (0.57)</td>
<td>291<sup>f</sup> (0.54)</td>
<td>282<sup>f</sup> (6.03)</td>
</tr>
<tr>
<td>Days to finish</td>
<td>222<sup>d</sup> (1.52)</td>
<td>227<sup>c</sup> (0.29)</td>
<td>235<sup>b</sup> (0.27)</td>
<td>246<sup>a</sup> (3.04)</td>
</tr>
<tr>
<td>Carcass weight (kg)</td>
<td>388<sup>e</sup> (1.59)</td>
<td>397<sup>b</sup> (0.3)</td>
<td>400<sup>a</sup> (0.28)</td>
<td>402<sup>a</sup> (3.19)</td>
</tr>
<tr>
<td>Grade rib eye area (cm²)</td>
<td>104<sup>a</sup> (0.65)</td>
<td>97.4<sup>b</sup> (0.12)</td>
<td>90.9<sup>d</sup> (0.11)</td>
<td>84.2<sup>g</sup> (1.29)</td>
</tr>
</tbody>
</table>

- Dark cutting steers were as heavy as most normal grades at the start of finishing.
- Dark cutting steers either finished in the same mean days or greater than normal grades.
- Mean carcass weight for B4 steers was lower than rest of the grades except Canada A which had gREA greater than all the other grades.
Results

- Results for fall-calved heifers were same as that for fall-calved and winter-calved steers.
- Increased dark cutting in heifers and steers may be due to reduced carcass weight.
- Increased carcass weight itself may not be responsible for reduced dark cutting but may represent increased growth rate because:
 - Fast growing cattle may have less response to stress.
 - May have adequate muscle glycogen.
 - May differ in utilization of muscle glycogen.

(Smith et al., 1999)
Conclusions

- Increased lairage/frequent shipping increased the likelihood of dark cutting.
- Heifers especially the calf-fed are more prone to cut dark than steers.
- Slow growing cattle are at greatest risk of cutting dark.
- Lack of implant effect was likely because there was adequate gap between terminal implant and slaughter.
Acknowledgment

Dr. Walter Dixon

Dr. Heather Bruce

Agriculture and Agri-Food Canada
Thank You!